
PCNS: Principal Component Network Shrinking

Research draft

P. Rolet

Sep 29, 2022

Abstract

This is a work in progress to explore an idea of algorithm that would sig-
ni�cantly reduce both the size and the training time of deep learning models.
Other shrinking methods such as distillation (e.g. Gou et. al., 2021) and
weight pruning (e.g. Renda et al., 2020) require a full training to be done
beforehand, and using them can be costly in terms of human and/or com-
puter time. If this idea, called Principal Component Network Shrinking or
PCNS, is successful, the expected bene�ts are:
a/ to minimize network size while maintaining good performance;
b/ to signi�cantly reduce training time;
c/ to be faster and simpler to operate than other shrinking methods;

Outline of the PCNS algorithm on a fully-connected layer (oversimpli�ed)
Given the output matrix of the layer on a large batch, i.e. its feature map
(with features as columns), consider its rows (each row corresponds to the
output of one neuron over the batch) and approximate them by performing
PCA and retaining the largest eigenvectors; change the layer's weights so that
applying the forward pass on the batch generates approximated eigenvectors
instead of the transposed outputs (this is done via ordinary least squares
and this is what actually reduces the size of the network); then change the
next layer's weights according to the linear combinations of eigenvectors
approximating the transposed outputs.

1 Introduction

The cost of training deep models is often high, therefore reducing this cost is
a sought-after goal for deep learning practitioners and researchers. Reducing
the model size is also a common objective, for faster and cheaper inference

1

and ability to �t the model in limited-memory devices. However, to the
best of the author's knowledge, the goals are usually considered separately:
methods to reduce training time rarely focus on reducing the model size
during training1, and conversely methods to shrink model size usually rely
on fully training the model �rst; reducing training time is not their stated
goal.

This, combined with the growing availability of computing power tai-
lored to deep learning, has led to model size reduction research being seen
as application-speci�c, restricted to mobile or embedded computing. But if
there was a way to shrink models during training, it may potentially make
training much faster�e.g. being able to halve the size of the layers during
training while maintaining approximately the same performance, would di-
vide by 4 the remaining training time. Additionally, the ability to reduce
the model size during training paves the way for deeper architectures with
less parameters2.

This work explores a new way to reduce model size called Principal

Component Network Shrinking or PCNS that can be applied soundly dur-
ing training, and as such can signi�cantly reduce training time. Other
deep learning model shrinking methods such as distillation (e.g. Gou, Jian-
ping and Yu, Baosheng and Maybank, Stephen J and Tao, Dacheng, 2021)
and weight pruning (e.g. Renda, Alex and Frankle, Jonathan and Carbin,
Michael, 2020) require a full training to be done beforehand; they also usu-
ally require further training and empirical parameter adjustments. If the
PCNS algorithm is successful, the expected bene�ts are:

� to minimize network size while maintaining good performance;

� to signi�cantly reduce training time;

� to be faster and simpler to operate than other shrinking methods;

The idea behind this algorithm stems from redundancy that can be ob-
served inside network layers, explained in the subsection below.

1An exception would be using sparse-inducing penalties in the training loss, e.g. pro-
portional to the L0-norm (e.g. Louizos, Christos and Welling, Max and Kingma, Diederik
P, 2017), but to the best of the author's knowledge, although this kind of approach has
existed for a while, it is not used in practice when training deep networks. This is not to
say that these techniques don't warrant further study�however, it is not the focus of this
work.

2Another informal, intuitive justi�cation for this work is the principle that learning
something using a smaller description can mean learning it "better" (the use of "Minimum
Description Length" approaches in machine learning likely stem from a similar intuition)

2

1.1 Redundancy

We can reduce the network during the training if we observe redundancy

in a layer, i.e. groups of neurons performing similar computations. The
simplest example would be 2 neurons having the exact same weights�in this
case it would make sense to remove one. Another basic example would be
a neuron that outputs 0 almost all the time: removing it would not change
the network's output. A neuron outputting almost always a value close to 1,
which may occur with saturating activation functions, can also be accounted
for by the bias of the layer.

The PCNS algorithm is an attempt to generalize these observations and
to remove redundancy during and after the training process, shrinking the
network in the process.

X(l−1) W (l)×.−−−−−→ S(l) σ(.)−−−→ X(l) W (l+1)×.−−−−−−−→ S(l+1) σ(.)−−−→ · · ·y
1O Compute EVs

EVM (X(l)) = Top M eigenvecs of TX(l)y
2O Shrink W(l)

W̃ = argminV ∥σ−1(EVM (X(l)))− V.X(l−1)∥2y
X(l−1) W̃(l)×.−−−−−−→ Z(l) ≈ σ−1(EVM)

σ(.)−−−→ ˜EVM ≈ EVM (X(l)) → · · ·y
3O Project on W(l+1)

P (l) = Projection matrix of TOs on EVsy
· · · → ˜EVM

P(l)×.−−−−−→ X̃(l) ≈ X(l) W (l+1)×.−−−−−−−→ S̃(l+1) ≈ S(l+1) → · · ·w�
X(l−1) W̃ (l)×.−−−−−→ .

σ(.)−−−→ ˜EVM
Ẇ(l+1)×.−−−−−−−→ S̃(l+1) → · · ·

Figure 1: Steps of the Principal Component Newtork Shrinking algorithm
Notations used in the schema are listed in section 1.4

3

1.2 Intuition behind the algorithm

A direct approach to eliminate redundancy would be to look directly into
weights matrices looking for neurons with similar weights. However, limiting
redundancy elimination to neurons with almost the same weights does not
account for the input distribution in the approximation. Even if the neu-
ron weights are not the same, we consider them redundant if they compute
similar outputs on most possible inputs.

Therefore, we will spot neuron redundancies by comparing neuron out-
puts. An underlying assumption of the algorithm is that if two neurons
generate almost the same ouput on a large input batch, they generate al-
most always the same output in general : one of them can be removed. The
algorithm will therefore focus on transposed ouputs. A transposed output is
the output of a single neuron on an entire input batch (whereas an output
usually refers to the output of all neurons on a single input).

The second idea in PCNS is to generalize "removing neurons with similar
outputs". Note that the existence of two neurons with the same outputs on
a batch means the rank of the transposed outputs matrix is smaller by one
(than if the neurons were not generating the same outputs). This leads to a
generalization embodied by using PCA on the transposed outputs : approxi-
mating them by projecting them on a basis made of the largest eigenvectors.
We then would like to use these eigenvectors in the network.

Since transposed outputs are approximated well by linear combinations
of the eigenvectors, the third idea is to change the weight matrix of the
layer so that instead of generating the transposed outputs, it generates those
eigenvectors. Then, the fourth idea is to use those linear combinations in the
next layer to make it so that the next layer's inputs are approximated versions
of its former inputs (approximated via aforementioned linear combinations).

The main steps of the algorithm are schematized in �g. 1. Those steps are
explained in more formal detail in section 2 (many important considerations,
e.g. the fact that σ−1 may not be de�ned, will also be adressed in sections
2 and 3).

The weight matrix of the layer in which we were looking to remove redun-
dancies has been replaced with a new weight matrix whose number of rows
(i.e. new number of neurons) is the number of top eigenvectors with which
we approximate the transposed outputs�potentially much smaller than the
number of transposed outputs themselves (i.e. the initial number of neurons
in the layer).

4

1.3 Structure

This work is currently in progress. It is layed out as follows:

� section 2 explains the PCNS algorithm in more details;

� section 3 outlines key factors for soundness and e�ciency of PCNS;

� sections 4 (not fully written yet) illustrates the PCNS algorithm on a
toy network trained on the MNIST dataset;

� section 5 (not fully written yet) explains the bene�ts mentioned in the
abstract and introduction, and detail important considerations and
caveats;

� section 6 explains next steps to complete this work.

1.4 Notations

This work is interested in a fully-connected neural network of L layers, such
that:

∀l ∈ [1, L]

{
S(l) = W (l).X(l−1)

X(l) = σ(S(l)) performed per coordinate

using the following conventions:

� uppercase letters are used to denote matrices; TS denotes the transpose
of matrix S; uppercase X is used to denote a batch of input vectors;
X(0)...X(L−1) are input batches of size B for layers 1 to L, and X(L) is
the output of layer L;

� subscript index is used to denote a column vector, therefore a matrix

is a sequence of column vectors, e.g. X(j) = X
(j)
1 ...X

(j)
B (consequently,

X
(j)
i = (X

(j)
i1 ...X

(j)
iNj

) denotes a single input vector of dimension Nj);

� vectors may also be designated with bold lowercase letters (e.g. y =

x(l+1) = X
(l+1)
1), and scalar with non-bold lowercase letters (e.g. y =

(y1, . . . , yn)) when appropriate;

� matrix W (l) represents the weights for layer l;

� σ is the activation function (or recti�er), the ⊙ operator may be used
to remind it is applied per-coordinate to vectors and matrices;

5

� S(l) denote the pre-recti�er outputs, with a capital S since they are
batch of vectors;

� at every layer, every input's last coe�cient is 1, so that the last value
of a neuron's weight is actually a bias. Therefore there is no explicit
bias addition operation.

Including the bias in the weight matrix in this manner is only aesthetic : it
simpli�es notations, but does not semantically alter computations presented
below (nor forward/backward propagations).

2 Algorithm description

This section describes Principal Component Network Shrinking for deep net-
works of fully-connected layers3.

Given a partially trained network, PCNS creates a shrinked network
with smaller layers4 whose output is a sound approximation of the original
network's output. Therefore, its error rate is comparable�depending of
course on the e�ciency of the approximation.

Training can be resumed with the new shrinked network, and the shrink-
ing operation can be repeated multiple times during training 5. If the shrink-
ing gains are large, training time will be signi�cantly reduced. This is a major
di�erence w.r.t. distillation / pruning techniques that require full training
and sometimes re-training afterwards.

Each hidden layer is shrinked by performing the three steps schematized
in �g. 1 (section 1.2). These steps are described in more detail below (layer
superscripts may be dropped when obvious from context).

2.1 Step 1: Compute eigenvectors of transposed outputs

Compute the output matrix X(l) of hidden layer l on a large6 batch B and
the transposed outputs (TOs) of the matrix�that is, the column vectors of
TX(l). Transposed output vector TO

(l)
i of size B can be understood as the

3Adaptations to convolutional layers are mentioned in section 6
4how much smaller depends on the layer redundancy introduced in 1.1. This is discussed

in more detail in section 3.1
5The computational complexity of the algorithm is equivalent to a few training epochs

on a batch. When to apply it for best results and fast training is discussed in section 5.1.2
6'Large' here refers to being at least a few times bigger than the number of neurons of

the layer. This is discussed more precisely in 3.2

6

output of a single neuron (neuron i in layer l) over the batch, as shown below. | |
X

(l−1)
1 · · · X

(l−1)
B

| |

σ ⊙

− W1 −
...

− WN −

X

(l)
1,1 · · ·
...

. . .
...

· · · X
(l)
N,B

 =

− TO1 −
...

− TOn −

(1)

Then, approximate the set of the transposed output vectors (TOs) using
PCA, that is using the eigenvectors (EVs) of the experiment matrix of the
TOs. The �rst M eigenvectors with the largest eigenvalues are selected so
that the sum of the M eigenvalues matches a desired variance threshold
(discussed in section 3.3; also note that M may be di�erent for each layer):

TO1 ≈ ˆTO+
∑M

1 λ1iEVi
...

TON ≈ ˆTO+
∑M

1 λNiEVi

(2)

where ˆTO = 1
N

∑
i TOi is the mean vector of transposed outputs and

λji =< TOj |EVi >, dot product of TOj and EVi, is the i th coe�cient of
the projection of TOj on the eigenvectors.

2.2 Step 2: Shrink the weight matrix

In the forward pass operation σ(W.X), replace W by the PCA-shrinked

weight matrix W̃ such that multiplying W̃ by X and applying σ yields ap-
proximated eigenvectors rather than transposed outputs. Compute W̃ by
�nding the least squares solution to the linear system below for each eigen-
vector EVi as well as for ˆTO.

W̃i.X = σ−1(EVi) (3)

where we solve for W̃i

Note that σ−1, the inverse of σ, may not be de�ned or directly applicable
depending on the bijectivity and domain of σ. For some activation functions
this is not an issue, e.g. LeakyReLU can be used directly since it is bijective
with domain spanning R. Other functions such as tanh and hardtanh only
need a minor adaptation for being applied on ˆTO, since the EVs have there

7

values in (-1,1) and both functions are bijective on the (-1,1) domain. For
most other common activation functions the issue can also be overcome, see
section 5.2.3. In this work, it is assumed LeakyReLU is used unless otherwise
speci�ed. | |

X1 · · · XB

| |

σ⊙

− W̃1 −

...

− W̃M −
− W̃ ˆTO −

− ẼV 1 −

...

− ẼV M −
− ˜̂

TO −

(4)

Replacing W by W̃ : the forward pass now outputs approximated eigenvectors

Replacing W by W̃ reduces the layer size (i.e. the number of rows) from
N to M +1. It also completely changes the layers' output on batch B, since
it yields approximated EVs (noted ẼV i) rather than TOs, but each TO can
be approximated by a linear combination of the EVs. A core assumption of
PCNS is that the linear combination of EVs approximating TOi (i.e. the
output of neuron i on batch B) can be a good approximation of neuron i's
output in general�that is, on other batches than B.

2.3 Step 3: Project approximation on next layer

Replace the weight matrixW (l+1) of the following layer by Ẇ (l+1) = W (l+1).P (l)

where P (l) is a dimension (Nl,M + 1) matrix, containing the coe�cients of
the approximated TOs when projected on the span of the EVs (see the λij of
equation 2). The resulting dimension of Ẇ (l+1) is then (Nl+1,M + 1). This
operation is depicted on equations 5 and 2.3.

By doing this, given a new input vector x(l−1) going through shrinked
layers l and l+1, the pre-σ output of layer l+1 noted s̃(l+1) will be a sound
approximation7 of s(l+1), the pre-σ output before transforming layers with
the PCNS algorithm, as schematised below.

As mentioned in the notations, to simplify equations the bias is included
in inputs as a 1 at the end. This is accounted here by adding a column of
zeros and a line of zeros at the end of P (l), with a single one in the bottom
right corner of the matrix. Thus, the approximated y = x(l) will have a 1 at

7The overall e�ciency of PCNS relies on the soundness of this approximation, discussed
in section 3

8

the end, coming from the 1 at the end of e (this is not mentioned in schemas,
equations and the rest of this work for readability�it does not impact in any
way the reasoning around the algorithm). |

x(l−1)

|

σ ⊙

− W

(l)
1 −
...

− W
(l)
Nl

−

x

(l)
1 = y1

...
yNl

− W

(l+1)
1 −
...

− W
(l+1)
Nl+1

−

 |
s(l+1)

|

(5)

Before: Given a new input x(l−1) to layer l, the forward pass yields

y = x(l), then the following layer's pass is applied via W (l+1) to yield s(l+1)

 |
x(l−1)

|

σ ⊙

− W̃

(l)
1 −
...

− W̃
(l)
M+1 −

 e1

...
eM+1

Ẇ (l+1)

P (l) =

λ11 · · ·
...

. . .
...

· · · λNlM+1

W (l+1) =

− W

(l+1)
1 −
...

− W
(l+1)
Nl+1

−

∑

i λ1iei ≈ y1
...∑

i λNliei ≈ yNl

 |
s̃(l+1) ≈ s(l+1)

|

(6)

After: W (l) is changed to W̃ (l); the new output of layer l is noted e.
Projecting using P (l) we fall back on approximated y then using W (l+1) continues

forward propagation: Ẇ (l+1) = P (l).W (l+1) can be soundly substituted to W (l+1)

Final remarks:

� Repeating the operation on all the hidden layers shrinks the whole
network;

9

� it makes no sense to apply PCNS to the last layer, as explained in
section 5.2.4;

� furthermore, the order in which layers are shrinked matters, as dis-
cussed in section 5.2.5.

3 Key factors for soundness and e�ciency of PCNS

PCNS relies on two main assumptions to perform well:

1. [Redundancy] There is redundancy in the network computations8;

2. [Sound approximation] The various approximations that PCNS per-
forms are good enough so that the shrinked network approximates well
the original network's output.

Applying PCNS on layer l works well if the outputs of layer l + 1 after
changing W (l) and W (l+1) are close to what they were before. As such
assumption 2 can be subdivided in the 3 approximations below�

a. the fact that the approximation is good on batch B must translate to
it being good in general;

b. the linear combination of eigenvectors of step 1 of PCNS must ap-
proximate the transposed outputs well;

c. the new weights of layer l as computed by step 2, must generate (via
the forward pass) good approximations of the eigenvectors on the PCNS
batch B;

This section explains how those assumptions impact the way the algo-
rithm works. Admittedly, the PCNS algorithm is at this stage theoretical;
its potential bene�ts need experiments to be con�rmed in practice and to
justify further research.

3.1 Redundancy and expected shrinking e�ciency

Assumption 1 states that the e�ciency of PCNS relies on how much neurons
are redundant, i.e. how much separate groups of neuron perform similar
computations, as introduced in sec. 1.1.

8intuitively, this assumption is probably not speci�c to PCNS. In its most general form,
assuming the network has no redundancy in any of its computations is likely (although
not certain) to impact negatively any model size reduction algorithm

10

In PCNS, this redundancy can be measured at each layer by checking the
number of required eigenvectors to reach a given variance�e.g. on a 1000
neurons layer, if using the 100 �rst eigenvectors accounts for 99.99% of the
variance, i.e. an error under 10−4, then the shrinking algorithm will perform
well, whereas if say more than 800 of them are needed to reach 90% variance
then PCNS probably won't be e�ective. Early experiments on toy problems
suggest that these kind of values (a tenth of the layer size for 10−4 variance)
may be common once the network has been partly trained

It is an interesting property of PCNS to be able to know in advance if
it is worth running it by looking at the distribution of the eigenvalues. As
training goes on, redundancy is likely to appear: the practitioner can wait
until it becomes worth it to actually run the algorithm in full and change
the network.

Note that looking at transposed outputs rather than weights ensures that
even if the same values are computed in a di�erent fashion across multiple
layers, the redundancy can still be removed starting from the last layers
(since ultimately similar outputs must appear at some point in later layers).

3.2 Sound approximation and batch size

The batch size used to run PCNS will impact the quality of the approxima-
tions.

A small batch size will allow for a good approximation of the TO by step
1 of PCNS, and of the EVs by step 2, but a poor generalization to other
batches (similarly to over�tting).

Therefore, a batch as large as possible ensures the best possible generalization�
just as a training set as large as possible is often desirable. If it results in
poor approximation quality in steps 1 and 2, it will be observable by the
fact that a high number of eigenvectors are necessary to account for enough
variance�showing that the network is not that redundant and that model
size reduction via PCNS will not be e�ective (see section 3.1 above).

The limiting factor for the batch size is of course the computational cost.
The batch should be at least a few times (e.g. 5-10 times) bigger than the
layer size, otherwise the risk of over�tting would be too great. Further work
will be done on the calculations of the theoretical approximation error to
determine more precisely the minimal size of the batch�that is, a theoretical
estimation of P (ϵ, B|ϵ0), the probability that the shrinked network errs less
than ϵ on a new batch, given that it errs less than ϵ0 on batch B of size B.

The goal of PCNS being to reduce both the model size and training time,
the chosen batch size would also depend on the overall training methodology�

11

e.g. if initial training is meant to run over tens thousands of epochs, choosing
a PCNS batch size of 10 times the layer size and running PCNS every thou-
sands of epochs will be suitable since it will limit the PCNS cost to a small
fraction of the training cost.

3.3 Sound approximation and variance threshold

The chosen variance threshold also impacts the quality of approximation
(mostly, assumption 2b): a low variance threshold will provide a better ap-
proximation by the eigenvectors, but the model size reduction will not be as
e�ective.

Since many applications and systems already have multiple sources of
randomness (e.g. small noise in input), setting the variance here to e.g. half
the value of a guess of the system's inherent variance should be good enough.

Basic experiments on toy problems lead to believe that the number of top
EVs for limiting the variance to e.g. 10-4 can sometimes be enough to divide
a layer size by 10. It is expected that observing the cumulative distribution
of eigenvalues and estimating the system's intrinsic variance should allow to
make an informed choice.

Further work will calculate formal estimates of the impact of the variance
threshold in the shrinked network performance.

3.4 Sound approximation and least squares estimation for W̃

When computing W̃ that generates eigenvector approximations in step 2,
the least squares e�ciency in approximation is also a determining factor
(assumption 2c).

When running the algorithm, it is simple to check whether the least
squares step performed well, by looking at the L2 norms between the "ap-
proximated eigenvectors" generated by W̃ , and the initial eigenvectors.

Further work will look at theoretical criteria and methods to guarantee
a priori that the least squares solutions will be good enough.

4 Example: running PCNS on a toy network

This section intends to illustrate PCNS on a toy network trained on MNIST
TODO

� Train a 2-layers fully connected network on MNIST

� Apply PCNS on the �rst layer, illustrate and explain what happens

12

� Apply PCNS on the second layer and show the performance is still
quite good

� Train for a few more epochs and show the performance improves, for
a fraction of the training time since the shrinked network is faster to
train

5 Bene�ts and caveats

This section will explain how the algorithm delivers the bene�ts mentioned
in introduction, and will detail a few important points to consider in order
to use the algorithm properly.

5.1 Bene�ts

Notable bene�ts wrt other shrinking methods would be 1/ to be able to be
used during training and thus reduce training time, and 2/ even used only as
a shrinking method, to be less costly and more straightforward to operate.

5.1.1 Lower cost and simplicity of operation

For a direct comparison with other methods, let us consider the case in
which PCNS is not performed during training (in that case it does not a�ect
training time)

� Distillation methods require trainings of a number of small models by
using the initally trained large model and selecting the one provid-
ing the best size/accuracy tradeo� (costing human time and computer
time);

� Weight pruning require retraining the model grid-searching on various
parameters (pruning %, training rewinding procedure) (costing human
time and computer time);

� PCNS can be applied one-shot at the end of training for a fraction of
the overall training time cost.

PCNS parameters do not need to be grid-searched�e.g. once the eigen-
value distribution is known, the choice for setting the variance threshold can
be made, without need to run the algorithm multiple times. Also, PCNS
allows to know the expected size of the shrinking (number of eigenvectors)
or whether it will work well (error rate of EVs generated by W̃).

13

5.1.2 Computational complexity & usage during training

The most costly steps of the algorithm are the eigenvectors and least square
solutions computations. The complexity of those are O(Nl+1*Nl*B) and
since B is supposed to be a few times bigger than Nl, this amounts to a cost
of a few training epochs. Therefore, applying the algorithm every ten times
"a few epochs" would ensure that its cost stays minimal as compared to the
global cost of training.

TODO

� Explain in more detail the computational cost

� Explain when (i.e. after how much training) PCNS should be expected
to shrink enough in a way that makes sense

� However, a point is that the cost of checking the number of top eigen-
vectors required is small wrt the total training time, so an option is
just to make this check every once in a while and actually apply PCNS
when the reduction is good enough

5.2 Important consideration and caveats

5.2.1 When does removing redundancy make sense

TODO

� Removing redundancy clearly makes sense after training (e.g. removing
a neuron always outputing 0 or the same as another neuron)

� Before training, it may not be the case for linear combination approx-
imations (because backprop may decombinate them)

� during training, it probably often makes sense, but �nd out when and
why

5.2.2 Covariate shift (incl. internal covariate shift)

TODO

� Looking at the hidden layer's outputs, their distribution will change
during training, so this may somehow impact PCNS

� Would batch normalization solve the issue here as it usually does with
internal covariate shift?

14

� This is not an issue at later stages of training, when the input distri-
bution stabilizes.

5.2.3 Adapting PCNS to various activation functions

TODO Explain how bijective functions can be handled using a shift, and
plain relu can be handled by decomposing into positive and negative com-
ponents of eigenvectors.

5.2.4 Last layer not concerned

The operation can be performed on all hidden layers, therefore shrinking
the whole network except for the last layer. Shrinking the last layer does
not make sense notably if it outputs e.g. class probabilities. Furthermore,
PCNS on layer l operates on weights of both l and l + 1. The last layer
has no following layer, it would make no sense that it outputs approximated
eigenvectors of the class probabilities.

5.2.5 Layer shrinking order

TODO explain that when applying PCNS

� performing a full forward pass on the batch and then shrinking layer
in increasing order cannot work given how the outputs are changed

� it would however work using a descending order

� another option would be to perform single-layer passes

� compare the 2 options

6 Next steps for this work

The next steps that are being taken to validate the PCNS algorithm are:

� Provide sound formal estimations for variance threshold & batch size
impact on shrinked network performance;

� Provide theoretical criteria and methods to guarantee a priori that the
least squares solutions of step 2 will be good;

� Provide performance bounds when applying the algorithm at the end
of training

15

� Adapt the algorithm to convolutional networks (which would most
likely result in reducing the number of channels, not the size of the
kernel)

� show how each PCNS step for fully-connected layers translates to
convolutional layers

� Check the algorithm is not redundant with other deep network opti-
mization techniques (e.g. batch normalization, dropout, resnets) and
can be seamlessly integrated with them;

� Measure redundancy of various classical deep networks on standard
problems (e.g. AlexNet on ImageNet) to see if there is one that would
most bene�t from being shrinked by PCNS

� Test PCNS on such networks and complete this work with the results.

7 Bibliography

Gou, Jianping and Yu, Baosheng and Maybank, Stephen J and Tao, Dacheng
(2021). Knowledge distillation: A survey, Springer.
Louizos, Christos and Welling, Max and Kingma, Diederik P (2017). Learn-
ing sparse neural networks through L_0 regularization, arXiv preprint arXiv:1712.01312.
Renda, Alex and Frankle, Jonathan and Carbin, Michael (2020). Com-

paring rewinding and �ne-tuning in neural network pruning, arXiv preprint
arXiv:2003.02389.

16

	Introduction
	Redundancy
	Intuition behind the algorithm
	Structure
	Notations

	Algorithm description
	Step 1: Compute eigenvectors of transposed outputs
	Step 2: Shrink the weight matrix
	Step 3: Project approximation on next layer

	Key factors for soundness and efficiency of PCNS
	Redundancy and expected shrinking efficiency
	Sound approximation and batch size
	Sound approximation and variance threshold
	Sound approximation and least squares estimation for

	Example: running PCNS on a toy network
	Benefits and caveats
	Benefits
	Lower cost and simplicity of operation
	Computational complexity & usage during training

	Important consideration and caveats
	When does removing redundancy make sense
	Covariate shift (incl. internal covariate shift)
	Adapting PCNS to various activation functions
	Last layer not concerned
	Layer shrinking order

	Next steps for this work
	Bibliography

